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Robust Factor-Based Investing
Jang Ho Kim, Woo CHang Kim, and FranK J. Fabozzi

Markowitz [1952] introduced a 
framework based on portfolio 
return and risk, often referred 
to as the mean–variance frame

work, for developing numerous contributions 
to portfolio optimization and investment 
management. The three most notable draw-
backs of mean–variance analysis are the dif-
ficulty in obtaining accurate input estimates, 
the sensitivity of the optimal portfolio to its 
inputs, and the limitation of using only one 
factor to drive returns (i.e., the market factor). 
Limiting the factors’ impact on returns to 
one factor and combining optimization with 
estimation are concerns for asset managers. 
Robust factor-based models address these 
three concerns by performing asset estima-
tion based on factors and enhancing portfolio 
stability through robust models.

Factor models are now an essential part 
of asset management for analyzing the risk 
characteristics of an individual security and 
portfolio, managing a portfolio’s exposure to 
the sources of portfolio risk, and reducing 
errors in estimating individual asset returns. 
Moreover, the identif ication of major 
factors in different markets led to invest-
ment strategies known as factor investing (Ang 
[2014]). These factor-based methods control 
portfolio exposure in specif ic factors that 
ref lect the desired views of asset managers. 
Recently, rule-based strategies packaged as 
smart beta investments have become popular 

factor-based approaches. As interest in factor-
based investing expands, robust factor models 
are gaining more attention for addressing the 
uncertainty in factor-based investments. 

Factors affect movements in financial 
markets; thus, identifying important factors 
and analyzing the relationship between 
factors and the overall market enable portfolio 
managers to understand the source of market 
movements and make investment decisions 
accordingly. The development of factor-
based robust models seems inevitable because 
estimation errors and model errors will be 
better controlled if managers concentrate 
on the main market characteristics when 
building robust models.

In this article, we provide a survey of 
studies on robust methods for factor-based 
investing. Although not limited to robust 
portfolio optimization strategies, many studies 
on robust factor-based methods apply the 
worst-case approach of robust optimization 
in which uncertainty in asset returns is 
expressed using a factor model. Depending on 
how the robust formulations are constructed, 
the strategies can be applied to investment in 
asset classes, investment in individual stocks, 
investment in factor indices, or investment 
for tracking an index. 

We begin by brief ly introducing 
robust portfolio models before discussing 
the use of robust factor models for port-
folio management. In addition to reviewing 
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factor-based strategies and factor exposure of robust port-
folio optimization, we comment on how robust optimi-
zation is utilized in practice for factor-based investing.1

ROBUST PORTFOLIO MANAGEMENT

Many portfolio strategies have their roots in the 
mean–variance model in which portfolio return and 
risk are estimated by mean and variance, respectively. 
Although higher portfolio returns are associated with 
higher portfolio risk, the goal is to consider the trad-
eoff between risk and return to reach optimal portfo-
lios for a given investment situation. However, the most 
notable obstacle in adopting the mean–variance frame-
work in practice is accurately estimating the required 
inputs, such as the vector of mean asset returns and the 
covariance matrix, which includes variances and covari-
ances of asset returns.

Another main issue with mean–variance portfo-
lios is the high sensitivity of portfolio weights to the 
inputs.2 Thus, not only is estimating the inputs of the 
mean–variance model a challenging task, it is arguably 
the most critical step affecting portfolio performance. 
Robust portfolio models address this issue by reducing 
the sensitivity to variations in the input estimates.

Robust Portfolio Optimization

The most widely studied robust method is robust 
portfolio optimization.3 In robust optimization, possible 
input values are specif ied in advance and the worst-
case approach is employed for finding the portfolio that 
performs well in even the worst situation within the 
predefined set of values. The set of possible input values 
are usually referred to as the uncertainty set, and there 
is much freedom in constructing uncertainty sets. For 
example, uncertainty sets can be defined for mean asset 
returns only or for multiple input types such as means, 
variances, and covariances of asset returns.

Nonetheless, the selection of uncertainty sets 
is critical in robust portfolio optimization because it 
determines whether a robust formulation can be effi-
ciently solved; robust problems will not be applicable in 
practice if robust allocations cannot be computed in a 
timely manner with standard optimization solvers.4 One 
common choice for uncertainty sets in robust mean–
variance portfolios is to determine a componentwise 
interval of possible values for every mean, variance, 

and covariance estimate required by the model. Thus, 
each component is assumed to deviate within a separate 
interval. It is also possible to form an uncertainty set 
with an elliptical shape in high-dimensional space repre-
senting possible values around a close distance to a point 
estimate. Regardless of the shape of uncertainty sets, 
robust portfolio optimization provides asset managers 
with worst-case estimations and, as a result, forms robust 
portfolios that account for worst situations.

Robust Portfolio Management in Practice

In general, the worst-case consideration of robust 
models is suitable for modeling worst scenarios in 
investments. It is mostly applicable in strategic asset allo-
cation for gaining diversification, stability, and perfor-
mance over the long horizon. Moreover, robust portfolio 
optimization achieves robustness through solving an 
optimization problem, and this becomes a great strength 
in practice because instabilities induced by constraints 
can also be formulated as robust problems. Hence, robust 
models can be expanded to include various uncertain 
situations in strategic asset allocation.

Although the implementation of worst-case 
optimization is based on mathematical foundations, the 
parameter values used in performing robust optimization 
are usually chosen empirically based on experience and 
analyses that fit each investment situation. For example, 
determining the level of robustness may depend on 
many details such as investment objective, time horizon, 
investment universe, and candidate assets.5 Nonetheless, 
there seems to be consensus that modeling uncertainty 
in only expected asset returns is sufficient for achieving 
robust performance and that elliptical uncertainty sets 
for expected returns are most effective in practice.

Asset managers should be aware that high robust-
ness may lead to conservative investments that may not be 
attractive under normal market conditions. In addition 
to adjusting the shape and size of uncertainty sets, one 
vendor suggests including an additional constraint that 
balances assets that have better-than-expected returns 
with assets that have worse-than-expected returns 
(Ceria and Stubbs [2006]). This constraint, referred 
to as the zero net alpha adjustment, assumes that not all 
assets will be in their worst condition simultaneously in 
a realistic worst scenario; on average, there will be some 
assets with higher values than expected and some assets 
with lower values than expected. The experience of 
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asset managers supports the effectiveness of the zero net 
alpha adjustment in reducing excessive conservativeness 
of robust portfolio optimization.

MODELING UNCERTAINTY  
USING FACTOR MODELS

Whereas the standard approach for worst-case 
models constructs uncertainty sets directly for inputs of 
the mean–variance model at the asset level such as means, 
variances, and covariances of asset returns, uncertainty 
can be modeled at the factor level by incorporating factor 
models into structuring uncertainty sets. Because factors 
represent sources of major movements in the market, 
uncertainty at the factor level may be a better choice 
for modeling estimation errors than ambiguity at the 
individual asset level. This section summarizes develop-
ments in modeling uncertainty using factor models for 
well-known portfolio models such as mean–variance 
problems, value-at-risk (VaR) problems, and conditional 
value-at-risk (CVaR) problems.

Robust Mean–Variance Models

One of the pioneering studies on robust port-
folio optimization using factor models was presented 
by Goldfarb and Iyengar [2003]. They develop robust 
portfolio formulations in which the uncertainty in asset 
returns is modeled from uncertainty arising from various 
linear factor model components, such as

 
for 1, ,

1
, ε∑= µ + + = …

=

r V f i ni i
j

m

j i j i

 

or in matrix form as

 ,ε= µ + +r V fT

 (1)

where n is the number of assets, m is the number of fac-
tors (m is usually much smaller than n), r is the vector of 
random returns of the n assets, µ is the vector of mean 
returns of the n assets, f is the vector of random returns 
of the m factors, V is the factor loading matrix (Vj,i is 
the sensitivity of the ith asset to the jth factor), and ε is 
the vector of residual returns. The covariance matrix 
of residual returns is denoted as D, which is assumed 
to be a diagonal matrix with only nonzero variances of 
residual returns.

In their model, uncertainty exists in three com-
ponents and the uncertainty sets are defined separately:

1. Mean return vector µ (componentwise interval 
uncertainty set)

2. Factor-loading matrix V (elliptical uncertainty set)
3. Covariance matrix D (componentwise interval 

uncertainty set).

Based on these uncertainty sets, they derive robust 
versions of several mean–variance portfolio formulations 
that are efficiently solved with comparable computa-
tional complexity as the classical nonrobust portfolio 
problems. For the remainder of this article, we refer 
to the factor model given by Equation 1, along with 
the above uncertainty sets, 1–3, as the robust factor 
model (RFM).

RFM is a separable model because it def ines 
separate uncertainty sets for different components of 
the factor model. Lu [2011a, 2011b] proposes a joint 
uncertainty set for the same linear factor model given 
by Equation 1. The joint uncertainty set defines a com-
bined ellipsoidal set for the mean return vector µ and 
the factor-loading matrix V. The joint uncertainty set 
specifies a single value representing the model’s overall 
robustness level; and the joint ellipsoid shape leads to 
improved portfolio performance because eliminating 
the corner cases of the separable model forms more 
diversified portfolios. Several robust formulations with 
a joint uncertainty set can be eff iciently solved and 
thus present another viable option as a robust invest-
ment strategy.

Some studies extend the use of RFM but take 
different approaches for constructing robust portfolios. 
Ma, Zhao, and Qu [2008] derive a worst-case utility 
maximization problem in which they introduce a 
concave–convex utility function measuring the utility 
of investors under uncertainty. The concave–convex 
function represents concave utility for gains (dimin-
ishing marginal utility with gain) and convex utility 
for losses (opposite behavior to gains). They show that 
the robust utility maximization problem can be solved 
efficiently. 

Li and Kwon [2013] propose an approach to 
incorporate tail events into robust formulations. Because 
expanding the uncertainty set to include extreme 
events will also elevate its conservativeness, they divide 
scenarios into groups that fall inside and outside of 
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predefined regions. Thus, they separately consider sce-
narios that are relatively more extreme and form robust 
portfolios when uncertainty exists in the mean vector 
and covariance matrix of factor returns. 

Robust Portfolio Models  
with Various Risk Measures

Concerns over representing investment risk with 
variance in the classical mean–variance model have 
motivated alternative measures of portfolio risk. Simi-
larly, factor-based robust formulations with various risk 
measures intend to resolve limitations in the use of vari-
ance. In the study by Goldfarb and Iyengar [2003], one 
of the robust formulations presented is a robust VaR 
portfolio problem. They show that the robust VaR 
problem can also be eff iciently solved when repre-
senting uncertainty in asset returns with their robust 
factor model.

Robust VaR optimization is also addressed by 
El Ghaoui, Oks, and Oustry [2003]. The main focus 
of their study is on formulating the worst-case VaR 
problem when the true distribution of returns is only 
partially known, such as the mean and covariance matrix. 
Optimal robust allocations can be easily computed when 
the mean vector and the covariance matrix of factor 
returns are assumed to be within componentwise 
intervals and when uncertainty in the residual return 
variances are defined by componentwise bounds. Alter-
natively, focusing on the uncertainty in factor loadings 
f inds an upper bound on the worst-case VaR. These 
three types of uncertainty sets model the source of ambi-
guity in different ways, but all formulations are solved 
efficiently and provide valuable information on robust 
investing.

Instead of using the mean and covariance matrix 
of factor returns, Natarajan, Pachamanova, and Sim 
[2008] allow asymmetric distributions in their model. 
They derive a robust VaR model for an uncertainty 
set on factor returns that relies on asymmetric vari-
ability measures, which they refer to as asymmetry-
robust VaR (ARVaR) problem for a factor model of 
returns. Their formulation generalizes the robust VaR 
model of El Ghaoui, Oks, and Oustry [2003], and it 
adds importance in portfolio risk management because 
ARVaR defines a coherent risk measure. The advantage 
of asymmetry information is confirmed with small-cap 
stocks of the S&P 600 Index because these stocks tend 

to have more skewed return distributions compared to 
large-cap stocks.

There are also cases in which RFM is imple-
mented in robust CVaR problems. Based on the worst-
case CVaR formulation of Zhu and Fukushima [2009], 
Ruan and Fukushima [2012] develop worst-case CVaR 
that utilizes factor models for modeling uncertainty in 
returns. Instead of computing CVaR from a known 
probability distribution, they consider a set of distribu-
tions that result in robust portfolios. More specifically, 
under the assumption of multivariate normal distribu-
tion with a fixed covariance matrix, the set of possible 
mean vectors is determined from a factor model. In their 
analysis, uncertainty sets constructed with the Fama–
French three-factor model from returns during market 
downturns are shown to provide safe investments, espe-
cially during market downturns.

Uncertainty in Factor Models

As discussed, many studies use RFM or a similar 
linear factor model to describe the source of estimation 
error in forming investment decisions. Nonetheless, the 
choice of factors is unrestricted and often left for port-
folio managers to decide. Thus, managers are naturally 
led to wondering if a particular factor model is ideal 
under a given situation. The possibility of relying on a 
suboptimal factor model or the existence of multiple can-
didate factor models introduces another view on model 
uncertainty and several models are introduced here.

Garlappi, Uppal, and Wang [2007] incorporate 
two aspects of uncertainty: parameter uncertainty and 
model uncertainty. They consider a situation in which 
a manager relies on a factor model for generating asset 
return estimates, and the manager is not only uncertain 
about the asset returns but also lacks confidence in the 
particular factor model. The formulation includes two 
ellipsoidal uncertainty sets for the returns of assets and 
factors, respectively. They demonstrate the effect of each 
type of uncertainty on portfolio composition and the 
importance of the relative level of uncertainty between 
the two in determining the optimal robust allocation. 
These findings are also empirically confirmed in the 
simplest case in which the capital asset pricing model 
(CAPM) is chosen as the return-generating model.

Lutgens and Schotman [2010] apply the max–
min approach for finding robust portfolios when there 
are multiple experts providing multiple estimates. 
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Each expert is assumed to use a linear factor model for 
estimating values that may differ from other experts. Lut-
gens and Schotman discuss the composition of optimal 
robust portfolios when the experts’ underlying factor 
models are either similar or conf licting. The authors 
also demonstrate robust performance through empiri-
cally testing robust portfolios constructed with experts’ 
views from the CAPM and the Fama–French three-
factor model. Two cases, uncertainty only in expected 
returns and uncertainty in both expected returns and 
covariance matrix, are considered.

Even though multiple candidates for factor models 
are not explicitly addressed, Glasserman and Xu [2013] 
study ambiguity that arises from the evolvement of the 
underlying factors of market movements. Hence, in their 
setting, factor models as well as factors themselves evolve 
stochastically and the degree of uncertainty is limited 
using relative entropy. The authors formulate finite and 
infinite horizon problems that take transaction costs 
into account, and they demonstrate the out-of-sample 
robustness with commodity portfolios in which factors 
are chosen as moving averages of futures prices.

Factor-Based Models in Practice

Factor models play several roles in robust invest-
ment strategies. One approach is to perform factor 
model analyses for acquiring factor-based estimates of 
asset returns, as well as market movements, prior to the 
allocation step. Thus, factor models result in meaningful 
inputs for robust models, and robust models result in 
robust allocations. Another approach is to formulate 
robust portfolio problems in which the optimal weights 
are allocations in factors. These strategies produce robust 
portfolios investing in factor indices or portfolios with 
robust exposure in desired factors. In terms of the types of 
factor models that are popular, macroeconomic, funda-
mental, and statistical factor models are all considered and 
the factors are chosen independently for each investment 
strategy depending on the investment characteristics.

ROBUST FACTOR-BASED STRATEGIES

In this section, we further discuss investment strat-
egies based on robust factor-based models. We begin by 
examining passive strategies for tracking an index and 
then introduce techniques for gaining additional alpha 
in robust strategies.

Robust Index Tracking

Index-tracking strategies have specif ic goals of 
closely following a given index; the primary objective 
is not to beat the index but to match index returns. 
Thus, robustness is arguably more important than in 
active strategies when full replication is impractical and 
a subset of index constituents must be chosen.

Erdoğan, Goldfarb, and Iyengar [2004] propose 
a robust maximum Sharpe ratio problem for tracking 
capitalization-weighted broad market indices. Motivated 
by the CAPM and the Black–Litterman model [1991], 
their strategy aims to find the portfolio with maximum 
Sharpe ratio, which represents the market portfolio of 
the CAPM, and computes the expected return vector 
from equilibrium risk premiums used in the Black–
Litterman model (He and Litterman [1999]). Erdoğan, 
Goldfarb, and Iyengar [2004] find that modeling the 
uncertainty in expected returns does not improve the 
performance of their model and thus construct uncer-
tainty sets for the factor-loading matrix and the covari-
ance matrix of residual returns of RFM. By adding a 
constraint for controlling portfolio beta and including 
weight adjustments for reducing transaction costs, their 
max–min formulation is demonstrated to be an effec-
tive index-tracking strategy with fewer stocks. In their 
experiments, they select eigenvectors of the return cova-
riance matrix and six major market indices as the set of 
factors. Moreover, they also comment on the advantage 
of using their robust formulation as a passive investment 
strategy through a buy-and-hold approach with their 
robust index-tracking portfolios.

Another robust index-tracking problem is formu-
lated by Kwon and Wu [2016]. Their formulation is 
more straightforward for forming index-tracking port-
folios: the objective is to maximize expected return of 
a tracking portfolio subject to a limit on its maximum 
tracking error. They model the uncertainty in returns 
through RFM and their factor-based robust strategy 
is illustrated for tracking the S&P 100 Index with the 
Fama–French three-factor model.

Robust Strategies for Improving Performance

Because residual returns not explained by a given 
benchmark may generate alpha returns, active invest-
ment strategies can exploit the advantage by modeling 
the ambiguity in residual returns. Erdoğan, Goldfarb, 
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and Iyengar [2004] model residual returns using RFM, 
and the robust formulation for maximizing the infor-
mation ratio with adjustments for reducing transaction 
costs is shown to have superior performance when the 
S&P 500 Index is set as the benchmark. Their robust 
active investment approach is further studied by Erdoğan, 
Goldfarb, and Iyengar [2006]. Specifically, they provide 
an example of modeling transaction costs and reformu-
late it into an efficient optimization problem. They also 
show how to limit average deviation in alpha, incor-
porate investors’ views, and implement a data-driven 
approach to expand its use in practice.

Asl and Etula [2012] share a practical factor-based 
approach to strategic asset allocation. Their six-factor 
model captures distinct sources of long-term returns across 
different asset classes: equity (market risk), term (inf la-
tion and interest rate risk), funding (risk in short-term 
credit conditions), liquidity (risk in marketwide liquidity 
conditions), FX (systematic exchange rate risk), and EM 
(risks specific to emerging markets). They demonstrate 
the strength of robust factor-based investing by applying 
robust portfolio optimization to asset allocation where 
their six-factor model is used for estimating expected 
returns of various asset classes. The robust factor-based 
approach is empirically shown to improve robustness as 
well as efficiency within the mean–variance framework. 

Although differing from the worst-case approach 
of many robust models, the Saxena and Stubbs [2013] 
approach derives a variation of the general multifactor 
model, as given by Equation 1, for improving risk estima-
tion that eventually results in robust performance. They 
argue that most factor models underestimate the risk of 
systematic risk factors that are not included in the partic-
ular factor model, and this causes underestimation of the 
optimized portfolio risk. As a solution, Saxena and Stubbs 
recommend considering the orthogonal component as an 
additional factor, which they refer to as the alpha align
ment factor. Using this factor can reduce the inconsistency 
between the estimated and realized portfolio risk. 

Cheung [2013] modif ies the Black–Litterman 
model [1991], which is widely accepted as an effec-
tive approach for improving portfolio robustness, to 
incorporate the investor’s view on factor movements. 
Whereas the original Black–Litterman model allows 
investors to insert views on asset returns, the proposed 
augmented version supports personal views on factor 
returns and idiosyncratic returns of assets, in addition 
to asset returns. Cheung [2013] provides a few specific 

examples on posterior returns; the investment universe 
is set to the constituents of the FTSE Eurotop 100 Index, 
and the relevant factors include industries and various 
fundamental factors. 

Practitioners’ Insights on Robust  
Factor Investing

For factor-based investing in general, one vendor 
stresses the value of incorporating the alpha alignment 
factor (Saxena and Stubbs [2013]). Adjusting the mis-
alignment between expected returns and risk models 
reveals significant improvements in practice. One port-
folio manager also mentions that managers use the alpha 
alignment factor with robust optimization in funda-
mental and statistical models.

Unfortunately, although practitioners believe that 
robust optimization is also applicable in recent factor-
based smart beta strategies, there does not seem to be a 
noticeable attempt to apply it in the asset management 
industry. However, there is consensus that the current 
status does not ref lect the limitation of robust models, 
and the value of worst-case approaches have ample possi-
bilities in portfolio management, including factor-based 
investment strategies.

FACTOR EXPOSURE  
OF ROBUST PORTFOLIOS

In this section, we summarize several studies 
that reveal the increased factor exposure of portfolios 
constructed from robust optimization. Although these 
studies do not directly offer robust investment strate-
gies, their findings suggest applying robust methods with 
caution, especially when it is important to control a 
portfolio’s factor exposure for risk management. 

With a focus on robust portfolio formulations with 
interval or ellipsoidal uncertainty sets on expected asset 
returns, Kim et al. [2013] examine the relationship 
between robust portfolio returns and the returns of the 
Fama–French three factors. They show empirically that 
robust portfolios have higher factor dependency than 
classical mean–variance portfolios under various condi-
tions. Furthermore, robust portfolios show higher factor 
dependency as the robustness level is increased. Kim, 
Kim, and Fabozzi [2014a] arrive at similar conclusions. 
They first show analytically that robust portfolio weights 
move closer to the portfolio with the highest factor 
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dependency, and then illustrate through simulation and 
historical market data that increasing robustness shifts 
portfolio weights toward the portfolio that is maximally 
explained by factor returns.

Although this may be a concern when performing 
robust optimization to improve investment performance 
robustness, Kim et al. [2014] develop several robust 
formulations that control the factor tilting of robust 
optimization. By limiting the shift toward increased factor 
dependency with linear constraints, the proposed formu-
lations produce robust portfolios with the desired factor 
exposures without affecting computational complexity.

CONCLUSION

Factor models are essential components for 
constructing portfolios—and understanding factors of 
various markets is critical for managing investment risk. 
Even though factor models provide portfolio managers 
with marketwide insight as well as individual asset infor-
mation, ambiguity may exist in the evolution of factors 
or the relationship between factors and assets. In other 
words, incorporating parameter uncertainty or model 
uncertainty of factor models can improve various invest-
ment strategies and analyses that rely on factor models.

In this article, we review studies on robust 
approaches for factor-based investing. A popular topic 
is the use of robust factor models in robust portfolio 
optimization. These models formulate a worst-case 
problem in which the possible situations are expressed 
with a multifactor model. The models summarized are 
applicable to asset allocation, portfolio selection, passive 
strategies such as index tracking, and active strategies. 
Moreover, experience from portfolio managers provides 
further insight on the value of robust investing.

ENDNOTES

We are grateful for the valuable comments from 
Robert A. Stubbs of Axioma, Jakub Duda of Goldman 
Sachs Private Wealth Management, and several researchers at 
BlackRock, Inc. This research was supported by Basic Science 
Research Program through the National Research Foundation 
of Korea (NRF), funded by the Ministry of Science, ICT, 
and Future Planning (NRF-2016R1C1B1014492).

1Insight on robust factor-based investing in practice is 
based on communication with Robert A. Stubbs of Axioma and 
Jakub Duda of Goldman Sachs Private Wealth Management. 

In particular, we present the use of robust optimization by 
managers with a focus on relation to factor models.

2See, for example, Michaud [1989], Best and Grauer 
[1991], and Chopra and Ziemba [1993].

3An overview on robust portfolio optimization is 
presented in Fabozzi et al. [2007] and Kim, Kim, and 
Fabozzi [2015].

4Some examples on uncertainty sets for mean–variance 
portfolios are introduced in Lobo and Boyd [2000] and Kim, 
Kim, and Fabozzi [2014b].

5An increase in the level of robustness can be imple-
mented by defining a larger uncertainty set that includes more 
extreme values.
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